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Soft-Decision-Driven Channel Estimation for
Pipelined Turbo Receivers

Daejung Yoon, Student Member, IEEE, and Jaekyun Moon, Fellow, IEEE

Abstract—We consider channel estimation specific to turbo
equalization for multiple-input multiple-output (MIMO) wireless
communication. We develop a soft-decision-driven sequential
algorithm geared to the pipelined turbo equalizer architec-
ture operating on orthogonal frequency division multiplexing
(OFDM) symbols. One interesting feature of the pipelined turbo
equalizer is that multiple soft-decisions become available at
various processing stages. A tricky issue is that these multiple
decisions from different pipeline stages have varying levels of
reliability. This paper establishes an effective strategy for the
channel estimator to track the target channel, while dealing with
observation sets with different qualities. The resulting algorithm
is basically a linear sequential estimation algorithm and, as such,
is Kalman-based in nature. The main difference here, however, is
that the proposed algorithm employs puncturing on observation
samples to effectively deal with the inherent correlation among
the multiple demapper/decoder module outputs that cannot
easily be removed by the traditional innovations approach. The
proposed algorithm continuously monitors the quality of the
feedback decisions and incorporates it in the channel estimation
process. The proposed channel estimation scheme shows clear
performance advantages relative to existing channel estimation
techniques.

Index Terms—Channel estimation, MIMO-OFDM, turbo
equalization, sequential estimator.

I. INTRODUCTION

COMBINING the multiple-input multiple-output (MIMO)
antenna method with orthogonal frequency division

multiplexing (OFDM) and spatial multiplexing is a well-
established wireless communication technique. Bit-interleaved
coded modulation (BICM) [1] used in conjunction with
MIMO-OFDM and spatial multiplexing (SM) is particularly
effective in exploring both spatial diversity and frequency
selectivity without significant design efforts on specialized
codes [2], [3]. Turbo equalization [4], also known as iterative
detection and decoding (IDD) in wireless applications [6],
is well-suited for BICM-MIMO-OFDM for high data rate
transmission with impressive performance potentials [5], [6].

A critical issue in realizing the full performance potential
of a MIMO-OFDM system is significant performance degra-
dation due to imperfect channel state information (CSI). The
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detrimental impact of imperfect CSI on MIMO detection is
well known (see, for example, [7], [8]) and continues to be
a great challenge in wireless communication system design.
Previous works have identified desirable training patterns
or pilot tones for estimating channel responses for MIMO
systems [9]–[13]. However, with these methods the achievable
data rate is inevitably reduced, especially when the number of
channel parameters to be estimated increases (e.g., caused by
an increased number of antennas).

Decision-directed (DD) channel estimation algorithms can
be applied to the turbo receivers to improve channel es-
timation accuracy [14]–[17]. However, inaccurate feedback
decisions degrade the estimator performance [18]. Maximum-
a-posteriori (MAP)-based DD algorithms discussed in [14],
[15] can improve the estimation accuracy, but they require
additional information like the channel probability density
function. The DD channel estimation algorithm jointly work-
ing with IDD has been actively researched [19]–[23]. Among
the existing research works, several papers have been devoted
to iterative expectation-maximization (EM) channel estima-
tion algorithms using extrinsic or a posteriori information
fed back from the outer decoder [19]–[21]. Although the
traditional EM-based estimation algorithms typically show
outstanding performance, the heavy computation complexity
and the iteration latency can be problematic for many practical
applications. While an approximation scheme as discussed in
[20] can reduce complexity, the performances of these ap-
proaches suffer from performance degradation as the number
of antennas increases [19]. Also, the EM estimation algorithms
need to be aided by pilot-based EM algorithms to guarantee
a good performance [20], [21].

As an alternative approach to iterative EM channel estima-
tion, Kalman-based channel estimators have been discussed
that are effective against error propagation [22], [23]. The
authors of [22], [23] have introduced a soft-input channel esti-
mator that adaptively updates the channel estimates depending
on feedback decision quality. The soft-input channel estimator
of [22] evaluates the feedback decision quality by tracking the
noise variance that includes the potential soft-decision error
impact in its effort to improve the update process for the
Kalman filter.

In the present work, we develop a Kalman-based channel
estimator for MIMO-OFDM based on a specific pipelined
turbo equalizer receiver architecture. Before setting up the
Kalman estimator, a novel method for reducing decision error
correlation is introduced. The proposed method constructs a
refined innovation sequence by irregularly puncturing certain
soft decisions that are deemed to be correlated with the
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previous decisions. The resulting algorithm is basically a linear
sequential estimation algorithm and, as such, is Kalman-based
in nature. We also weigh the estimated channel responses
in the detection process according to the quality of the
estimation.

A critical issue in turbo receiver design is long processing
latency due to inherent iterative processing of information.
Pipelined architecture reduces the latency and improves pro-
cessing throughput in turbo receivers and thus is the prevailing
choice of the implementation architecture [24], [25]. One
interesting feature of the pipelined turbo equalizer is that
multiple sets of soft-decisions become available at various pro-
cessing stages. A tricky issue is that these multiple decisions
from different pipeline stages have varying levels of reliability.
Therefore, an adequate optimization strategy is required for
the estimator to track the target channel while dealing with
observation sets with different qualities. An optimum channel
estimator is derived based on this principle for the pipelined
turbo receiver.

In demonstrating the viability of the proposed schemes, a
SM-MIMO-OFDM system is constructed to comply with the
IEEE 802.11n high speed WLAN standard [26]. Section II
discusses the channel and system model, and briefly touches
upon the high-throughput pipelined IDD architecture. Section
III discusses the method to set up an improved innovation
sequence via puncturing. Next, the proposed soft-DD Kalman-
based channel estimation methods are presented in section III.
Mean squared error (MSE) analysis is provided in Section IV
that validates the performance merits of the proposed schemes.
In Section V, the convergence behavior is investigated via
the extrinsic information transfer (EXIT) charts [28], and
packet error rate (PER) simulation results are presented for
performance evaluation. Finally conclusions are drawn in
Section VI.

II. CHANNEL AND SYSTEM MODEL

We assume a SM-MIMO-OFDM transmitter where a data
bit sequence is encoded by a convolutional channel encoder,
and the encoded bit stream is divided into 𝑁𝑡 spatial streams
by a serial-to-parallel demultiplexer. Each spatial stream is
interleaved separately, and the interleaved streams are modu-
lated using an 𝑀 -ary quadrature amplitude modulation (𝑀 -
QAM) symbol set 𝒜 based on the Gray mapping. Since
𝑄 binary bits form an 𝑀 -QAM symbol, a binary vector
b = [𝑏0, 𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑄𝑁𝑡−1]

𝑇 is mapped to a transmitted symbol
vector s = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑁𝑡 ]

𝑇 (with 𝑠𝑖 ∈ 𝒜), taken from
the set 𝒜𝑁𝑡, a Cartesian product of 𝑀 -QAM constellations.
The 𝑀 -QAM symbol sequence in each spatial stream is
transmitted by an OFDM transmitter utilizing a fixed number
of frequency subcarriers. For a particular subcarrier for the
𝑛𝑡ℎ OFDM symbol, the received signal at the discrete Fourier
transform (DFT) output can be written as

z𝑛 = Hs𝑛 + n𝑛 , (1)

where z𝑛 = [𝑧1(𝑛), 𝑧2(𝑛), ⋅ ⋅ ⋅ , 𝑧𝑁𝑟(𝑛)]
𝑇 is the received signal

vector observed at the 𝑁𝑟 receive antennas, and H is the
channel response matrix associated with all wireless links
connecting 𝑁𝑡 transmit antennas with 𝑁𝑟 receive antennas
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Fig. 1. Block diagram of the turbo receiver and the soft-decision-directed
channel estimator.
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Fig. 2. OFDM-symbol processing procedure in the pipelined IDD.

antennas, and n𝑛 is a vector of uncorrelated, zero-mean
additive white Gaussian noise (AWGN) samples of equal
variance set to 𝒩𝑜.

The IDD technique of [5] that performs turbo equalization
for MIMO systems is assumed at the receiver. The extrinsic
information on the coded-bit stream is exchanged in the form
of log-likelihood ratio (LLR) between the soft-input soft-
output (SISO) decoder and the SISO demapper as shown
in Fig. 1. The demapper takes advantage of the reliable
soft-symbol information made available by the outer SISO
decoder. A soft-output Viterbi algorithm (SOVA) is used for
the SISO decoder implementation [29]. Each data packet
transmitted typically contains many OFDM symbols, and they
are processed sequentially by the demapper and the decoder
as they arrive at the receiver. The feedback decisions used for
channel estimation must be interleaved coded-bit decisions.
The extrinsic information from the demapper are rearranged
accordingly and made available to the channel estimation
block. The pipelined architecture is adopted to reduce the
iteration latency [24], [25]. Fig. 2 illustrates OFDM symbols
processed in the pipelined IDD, and Fig. 3 shows the structure
of the pipelined IDD receiver and its interface with the
channel estimator. Multiple demapper-decoder pairs process
multiple OFDM symbols at different iteration stages. Let 𝑁𝑖𝑡𝑟
denote the number of the IDD iterations required to achieve
satisfactory error rate performance. The 𝑁𝑖𝑡𝑟-stage pipelined
IDD receiver is equipped with 𝑁𝑖𝑡𝑟 demappers and 𝑁𝑖𝑡𝑟
decoders that are serially connected as in Fig. 3. The decoder
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Fig. 3. Block diagram of the proposed optimum channel estimation algorithm geared to the pipelined IDD.

forwards its extrinsic information output to the demapper in
the next iteration stage. Simultaneously, the demapper and the
decoder in the previous iteration stage start to process a new
OFDM symbol. The pipelined IDD operation is functionally
equivalent to the original IDD scheme [24]. The extrinsic
LLRs released from the pipelined demappers and decoders
are utilized for the channel estimation. Let 𝑁𝑠𝑦𝑚 denote
the number of total OFDM symbols in a packet and 𝑁𝑓
the number of the feedback symbols available for channel
estimation. Note, however, that not all 𝑁𝑓 symbols are used
for the estimation. If the receiver requires 𝑁𝑖𝑡𝑟 IDD iterations,
then a maximum of 2𝑁𝑖𝑡𝑟 OFDM symbols are processed in
the pipelined IDD receiver as illustrated in Fig. 3. Because
the LLR outputs from the initial demapper and decoder have
low reliability, they are not used for the channel estimation.
Let index 𝑛 indicate the time. In this pipelined IDD setup,
when 2 ≤ 𝑛 ≤ 2𝑁𝑖𝑡𝑟, the channel estimator can get (𝑛 − 2)
feedback decisions (i.e. 𝑁𝑓 = 𝑛−2). When the number of the
processed symbols increases to 2𝑁𝑖𝑡𝑟 (2𝑁𝑖𝑡𝑟 ≤ 𝑛 ≤ 𝑁𝑠𝑦𝑚),
𝑁𝑓 is equal to 2𝑁𝑖𝑡𝑟 − 2. After all the OFDM symbols in
the packet have arrived at the receiver front-end, it will take
sometime until all symbols will clear out of the pipeline. For
𝑛 ≥ 𝑁𝑠𝑦𝑚, 𝑁𝑓 is equal to 𝑁𝑠𝑦𝑚 + 2𝑁𝑖𝑡𝑟 − 𝑛.

III. SEQUENTIAL AND SOFT-DECISION-DIRECTED

CHANNEL ESTIMATION

A. Derivation of the Kalman-Based Sequential Channel Esti-
mation Algorithm

The sequential form of the estimator is useful in improving
the quality of the channel estimate as the observed symbols
arrive in a sequential fashion, as OFDM symbols do in the
system of our interest. It is assumed that the channel is quasi-
static over 𝑁𝑓 OFDM symbol periods. For the pipelined IDD
receiver at hand, the observation equation is set up at the 𝑟𝑡ℎ

receiver (RX) antenna as

z(𝑟)𝑛 = S𝑛h
(𝑟) + n(𝑟)𝑛 , (2)

where z(𝑟)𝑛 is the 𝑁𝑓 × 1 received signal vector, S𝑛 is a
𝑁𝑓 ×𝑁𝑡 matrix, h(𝑟) is a 𝑁𝑡 × 1 vector that is a multi-input-
single-output (MISO) channel vector specific to the 𝑟𝑡ℎ RX
antenna. The goal is to do a sequential estimation of h(𝑟)

as 𝑛 progresses. The estimation process is done in parallel
to obtain channel estimates for all 𝑁𝑟 RX antennas. With an
understanding that we focus on a specific RX antenna, the RX
antenna index 𝑟 is dropped to reduce notation cluttering.

A mean symbol decision 𝑠 is defined as the average of the
constellation symbols according 𝑠 =

∑
𝑠𝑖∈𝒜 𝑠𝑖𝑃 (𝑠𝑖), where

𝑃 (𝑠𝑖) is the “extrinsic probability" obtained from a direct
conversion of the available extrinsic LLR.

1) Innovation Sequence Setup: The pipeline architecture
can be viewed as a buffer large enough to accommodate 𝑁𝑓
OFDM symbols, but we take into account in our channel
estimator design the different levels of reliability for the soft
decisions coming out of the demapper or decoder modules at
different iteration stages. First, defining the soft decision error
E

Δ
= S− S̃, (2) can be rewritten as

z𝑛 = {S̃𝑛 +E𝑛}h+ n𝑛. (3)

Note that this type of soft decision representation has been
used previously [22]. We emphasize, however, that unlike in
[22], our derivation of a linear sequential estimator is based
on the attempt to explicitly generate the innovation sequence.
As will be clear in the sequel, this approach has led us to
a realization that the standard steps taken to generate the
innovations do not work in our set up; this in turn allowed us
to devise corrective measures. Let us first see if we can find
x𝑛, the innovations of z𝑛 (i.e., the whitened sequence that is
a causal, as well as a casually invertible, linear transformation
of z𝑛). We write:

x𝑛
Δ
= z𝑛 − S̃𝑛ĥ𝑛−1 (4)

= S̃𝑛(h− ĥ𝑛−1) +E𝑛h+ n𝑛. (5)

Ideally, the vector sequence x𝑛 would represent an innovation
sequence in the sense that any given component of the vector
x𝑛−𝑘 is orthogonal to any component of x𝑛 as long as 𝑘 ∕= 0.
In this scenario we would have

𝐸 [𝑥𝑛−𝑘[𝑖]𝑥∗𝑛[𝑗]] = 𝐸
[
e𝑛−𝑘[𝑖]ĥ𝑛−𝑘−1h

𝐻e𝐻𝑛 [𝑗]
]
+𝒩𝑜

=

{ ∑𝑁𝑡

𝑡=1 𝜌
(𝑡)
𝑛−1𝜎

2
𝑠 [𝑡, 𝑖] +𝒩𝑜 when 𝑘 = 0 and 𝑖 = 𝑗

𝜖(≈ 0) otherwise,
(6)

where e𝑛[𝑖] indicates the 𝑖𝑡ℎ row vector E𝑛, 𝜌
(𝑡)
𝑛−1

Δ
=

𝐸[ℎ̂
(𝑡)
𝑛−1ℎ

∗(𝑡)] and 𝜎2
𝑠

Δ
= 𝐸[∣𝑠−𝑠∣2], the symbol decision error

variance. The superscript ‘𝐻’ and the symbol ‘∗’ denote the
Hermitian transpose and the complex-conjugate, respectively.
In deriving (6), we assumed: 𝐸[𝑥𝑛−𝑘[𝑖](h − ĥ𝑛−1)

𝐻 ] = 0,
𝐸[𝑠[𝑖] 𝑒∗[𝑗]] = 0 for any 𝑘, 𝑖 and 𝑗. In order for this to be
true, though, the following must hold:

1) Links in the MISO channel are uncorrelated.
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Fig. 4. Correlations in the ‘innovation’ sequence: (a) 𝐸[x𝑛−2x𝐻
𝑛 ] (b)

𝐸[y𝑛−2y𝐻
𝑛 ], 𝑐 = 0.8 (normalized by 𝐸[∣𝑦𝑛[0]∣2], averaging 50 erroneous

packets).

2) The channel estimate and decision error are independent.
3) The decision errors are uncorrelated.

(i.e. 𝐸[𝑒𝑛−𝑘[𝑖]𝑒∗𝑛[𝑗]] = 𝜖, 𝑘 ∕= 0 or 𝑖 ∕= 𝑗)

Under these three assumptions, the vector x𝑛 reasonably
represents an innovation sequence.

2) Innovation Sequence with Punctured Feedback: As-
sumption (1) is reasonable, if the RX antennas maintain
reasonable physical separation. However, assumptions (2) and
(3) are not convincing. A poor channel estimate generates
a poor decision, which in turn affects the ability to make
reliable channel estimation. This makes both assumptions (2)
and (3) invalid. As such, the Kalman filter is not optimum
any more, and the correlated error circulates in the IDD and
channel estimator loop. Our goal here is to provide a refined
innovation sequence to reduce this error propagation. First,
we observe that there is no significant correlation between the
decision errors of the demapper and decoder thanks to the
interleaver/deinterleaver. An issue is the demapper-demapper
or decoder-decoder output correlations for a given received
signal (OFDM symbol), especially when a packet is bad (i.e.,
certain tones cause errors despite persistent IDD efforts). In the
pipelined IDD setup, it takes 𝑛 = 2 time steps for a demapper
decision to shift to the next-stage demapper, and likewise for
the decoder outputs. Consequently, components in observation
vectors with even time difference has correlation, as seen in
Fig.4 (a) between x𝑛 and x𝑛−2. In addition, we cannot assume
that the noise is random as long as identical observations are
reused during the iterative channel estimation.

This correlation in x𝑛 is definitely problematic for any
Kalman estimator design. Imagine removing correlation in x𝑛
using the Gram-Schmidt procedure:

𝑥
′
𝑛[𝑓 ] = 𝑥𝑛[𝑓 ]− ⟨𝑥𝑛[𝑓 ], 𝑥𝑛−2[𝑓 − 2] ⟩

∣𝑥𝑛−2[𝑓 − 2]∣2 𝑥𝑛−2[𝑓 − 2] (7)

where < 𝑎, 𝑏 > denotes the inner product: < 𝑎, 𝑏 >=
𝑅𝑒(𝑎)𝑅𝑒(𝑏) + 𝐼𝑚(𝑎)𝐼𝑚(𝑏). Now, (6) can be rewritten (for
𝑘 = 2 and dropping indices to simplify notation) as

𝐸 [𝑥𝑛−2 𝑥
∗
𝑛] = 𝐸

[
𝑥𝑛−2 𝑥

′∗
𝑛

]
+ 𝐸

[
∣𝑥𝑛−2∣2 ⟨𝑥𝑛, 𝑥𝑛−2⟩

∣𝑥𝑛−2∣2
]

= 𝐸 [⟨𝑥𝑛, 𝑥𝑛−2⟩] (8)

which suggests that using only those samples of 𝑥𝑛 for which
⟨𝑥𝑛, 𝑥𝑛−2 ⟩ ≤ 𝜖, where 𝜖 is an adjustable threshold, we

can limit the amount of correlation in the overall observation
samples utilized.

Before delving into the proposed “puncturing" process,
we note that the amount of puncturing needs be decided
judiciously, as removing observation samples also tends to
“harden" the decisions, making the overall system approach
one of hard decision feedback, a situation we need to avoid.
Also, one may be tempted to use a more conceptually
straightforward approach of subtracting out the correlated
component as suggested by (7) or its generalized version
including subtraction of less correlated components, but we
had no meaningful success in reducing correlated errors with
approaches along this direction.

Equation (8) suggests the following as a measure of corre-
lation between the previous demapper and current demapper
outputs (or between the previous decoder and current decoder
outputs):

𝛽𝑛(𝑓)
Δ
= ⟨𝑥𝑛−2[𝑓 − 2], 𝑥𝑛[𝑓 ] ⟩ . (9)

Now redefine 𝑁𝑑 as the number of components among 𝑥𝑛(𝑓)’s
satisfying a threshold condition of

∣𝛽𝑛(𝑓)∣ ≤ 𝑐𝒩𝑜. (10)

With this condition, let index 𝑑 now denote the number of
selected components among 𝑁𝑓 feedback symbols (i.e. 𝑑 =
0, ..., 𝑁𝑑− 1). The constant 𝑐 (≥ 0) is an important parameter
that controls the puncturing threshold. An improved innovation
sequence y𝑛 can be written as

y𝑛 = G𝑛x𝑛, (11)

where G𝑛 is defined as a 𝑁𝑑×𝑁𝑓 puncturing matrix. For the
𝑑𝑡ℎ row vector g(𝑑)𝑛 of the puncturing matrix, elements are
given as

𝑔(𝑑)𝑛 [𝑓 ] =

{
1, 𝑖𝑓 𝛽𝑛(𝑓) ≤ 𝑐𝒩𝑜 𝑜𝑟 𝑑 = 𝑓 = 0 𝑜𝑟 𝑑 = 𝑓 = 1
0, otherwise.

(12)
Note 𝑥𝑛[0] and 𝑥𝑛[1] are new input elements from the
first demapper and decoder outputs, which are automatically
included in the refined innovation vector. As long as the
observations are reused during the iterative process, the noise
correlation is also problematic in the channel estimation. To
resolve this issue, a scaled noise variance is adopted as a
threshold criterion to judge minimum correlation, because the
noise variance term in (6) is inevitable. Highly correlated
signal and noise components are punctured out depending on
the constant 𝑐.

It is insightful to consider a simple argument based on
random puncturing. Suppose the observation samples are
dropped in a random fashion. Then, the element 𝑥𝑛−2[𝑓 − 2]
can of course be excluded from y𝑛−2 by puncturing, and so
can 𝑥𝑛[𝑓 ] from y𝑛. With random puncturing, the innovation
process on each element can be analyzed as (dropping index
𝑓 )

𝐸 [𝑦𝑛−2𝑦
∗
𝑛 ] = 𝐸 [𝑔𝑛−2𝑥𝑛−2𝑥

∗
𝑛𝑔𝑛]

= 𝑃 (𝑔𝑛−2 = 1)𝐸 [𝑥𝑛−2𝑥
∗
𝑛]𝑃 (𝑔𝑛 = 1)

=
𝑁

(𝑛−2)
𝑑 𝑁

(𝑛)
𝑑 𝐸 [𝑥𝑛−2𝑥

∗
𝑛](

𝑁
(𝑛−2)
𝑓 −𝑁

(𝑛−2)
𝑑 + 1

)(
𝑁

(𝑛)
𝑓 −𝑁

(𝑛)
𝑑 + 1

) , (13)
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where 𝑃 (𝑔𝑛 = 1) is the probability that the corresponding
component 𝑥𝑛 exists in y𝑛. As 𝑁𝑓 increases and/or 𝑁𝑑 de-
creases in (13), the correlation 𝐸 [𝑦𝑛−2𝑦

∗
𝑛] decreases (likewise

for the variance-normalized correlation). The same is true for
the noise correlation.

Fig. 4 shows the example of correlation in the innovation
sequence before and after the refinement through puncturing:
𝐸[x𝑛−2x

𝐻
𝑛 ] vs 𝐸[y𝑛−2y

𝐻
𝑛 ]. The sequence y𝑛 may have a

smaller number of observation samples, but its correlation
is low as seen in Fig.4 (b), which is useful to maintain the
optimality of the Kalman filter. The parameter 𝑐 controls trade-
off : if 𝑐 is large, the number of observation samples increases,
which can be beneficial for ML estimation. However a large 𝑐
can feed biased decision errors to the Kalman-based estimator.

Note that the actual puncturing process is not fully random
as our assumption made in (13). However, the puncturing
happens irregularly, and an interesting observation we make is
that irregular puncturing activity become more pronounced in
broken (bad) packets. Once the decisions are incorrect, corre-
lation between the components of x𝑛 appears, and puncturing
becomes active. In order to salvage a bad packet from biased
errors, the puncturing attempts to “innovate" the sequence x𝑛.
Moreover, in high SNR, random puncturing is not necessary to
produce reliable decisions, because the signal term itself in (5)
(without the noise and estimation error terms) is an innovation
sequence. Also, the puncturing process in this context can
also be viewed as an effort to prevent redundant information
from circulating in the iterative signal processing. We observe
that although the puncturing cannot completely remove the
correlated errors, a significant portion of the biased-errors gets
eliminated before the channel estimation step resumes.

B. Kalman-Based Sequential Channel Estimation Algorithm
with Punctured Innovation Sequence

Once the punctured innovation sequence y𝑛 is generated, a
linear channel estimator can be specified as a matrix A, that
is, ĥ = Ay𝑛. The Kalman estimator is now derived as

ĥ𝑛 = 𝐸[h∣y1,y2, ...,y𝑛]
= 𝐸[h∣y1,y2, ...,y𝑛−1] + 𝐸[h∣y𝑛]
= ĥ𝑛−1 +A𝑛y𝑛, (14)

where 𝐸[a∣b] denotes the optimal linear estimator of a given
b. To find the linear estimator matrix A𝑛, the orthogonality
principle is applied:

(h−A𝑛y𝑛)y𝐻𝑛 = 0

A𝑛y𝑛y𝐻𝑛 = hy𝐻𝑛 , (15)

where an overbar also indicates statistical expectation. The
right-hand-side of the last line in (15) is given by

hy𝐻𝑛 = (h− ĥ𝑛−1)(h− ĥ𝑛−1)𝐻︸ ︷︷ ︸
Δ
=P𝑛−1

S̃𝐻𝑛 , (16)

whereP𝑛−1 is defined as the channel estimation error variance
matrix, and the term y𝑛y𝐻𝑛 in (15) can be written as

y𝑛y𝐻𝑛 = S̃𝑛(h− ĥ𝑛−1)(h− ĥ𝑛−1)𝐻 S̃
𝐻
𝑛

+E𝑛hh𝐻E𝐻𝑛︸ ︷︷ ︸
Δ
=Q𝑛

+𝒩𝑜I𝑁𝑑
. (17)

Now using (15), (16) and (17), the matrix A𝑛 is obtained as

A𝑛 = hy𝐻𝑛 (y𝑛y𝐻𝑛 )−1

= P𝑛−1S̃
𝐻
𝑛 (S̃𝑛P𝑛−1S̃

𝐻 +Q𝑛 +𝒩𝑜I𝑁𝑑
)−1

=
(
S̃𝐻𝑛 (Q𝑛+𝒩𝑜I𝑁𝑑

)−1 S̃𝑛+P
−1
𝑛−1

)−1

⋅ S̃𝐻𝑛 (Q𝑛+𝒩𝑜I𝑁𝑑
)
−1

. (18)

The next steps to complete the derivation process are to
express P𝑛−1 and Q𝑛 in a recursive fashion. Noticing (h −
ĥ𝑛) = h− (ĥ𝑛−1+A𝑛y𝑛) from (14), the channel estimation
error variance at time 𝑛 can be rewritten as

P𝑛 = {h− (ĥ𝑛−1 +A𝑛y𝑛)}{h− (ĥ𝑛−1 +A𝑛y𝑛)}𝐻
= (h− ĥ𝑛−1)(h − ĥ𝑛−1)𝐻 − (h− ĥ𝑛−1)y𝐻𝑛 A

𝐻
𝑛

−A𝑛y𝑛(h− ĥ𝑛−1)𝐻 +A𝑛y𝑛y𝐻𝑛 A
𝐻
𝑛

= P𝑛−1 −A𝑛S̃𝑛P𝐻𝑛−1

= (I𝑁𝑡 −A𝑛S̃𝑛)P𝑛−1, (19)

where we utilized the relation y𝑛y𝐻𝑛 A
𝐻
𝑛 = S̃𝑛P

𝐻
𝑛−1 which

is obvious from (15) and (16). Also note P𝑛 is a symmetric
matrix of which pivot has non-negative real values.

Finally, Q𝑛 needs to be found. The symbol decision error
variance 𝜎2

𝑠 = 𝐸[∣𝑠− 𝑠∣2] can be found by using the extrinsic
probabilities (i.e. 𝜎2

𝑠 =
∑
𝑠𝑖∈𝒜 ∣𝑠𝑖 − 𝑠∣2𝑃 (𝑠𝑖)). Under the

reasonable assumption of (𝑠𝑗 − 𝑠𝑗)(𝑠𝑖 − 𝑠𝑖)∗ = 0 when 𝑖 ∕= 𝑗,
the 𝑁𝑑 ×𝑁𝑑 diagonal matrix Q𝑛 is given as

E𝑛hh
𝐻E𝐻𝑛 = diag

[∑𝑁𝑡

𝑡=1
𝜌(𝑡)𝜎2

𝑠 (𝑛, 0, 𝑡), ...,∑𝑁𝑡

𝑡=1
𝜌(𝑡)𝜎2

𝑠 (𝑛,𝑁𝑑 − 1, 𝑡)

]
𝑁𝑑×𝑁𝑑

,(20)

where 𝜌(𝑡)
Δ
= ∣ℎ(𝑡)∣2. However, finding 𝜌(𝑡) is a bit tricky

as the channel state information is unknown to the receiver.
The channel correlation matrix hh𝐻 , on the other hand, can
be found from hh𝐻 = {(h− ĥ𝑛) + ĥ𝑛}{(h− ĥ𝑛) + ĥ𝑛}𝐻 ,
which reduces to P𝑛 + ĥ𝑛ĥ

𝐻
𝑛 . Utilizing this expression, we

can write

Q𝑛 = E𝑛

(
P𝑛 + ĥĥ

𝐻

𝑛

)
E𝐻𝑛

= diag

[
𝑁𝑡∑
𝑡=1

(
𝑝𝑛(𝑡, 𝑡) + ∣ℎ̂(𝑡)𝑛−1∣2

)
𝜎2
𝑠 (𝑛, 0, 𝑡), ...,

𝑁𝑡∑
𝑡=1

(
𝑝𝑛(𝑡, 𝑡) + ∣ℎ̂(𝑡)𝑛−1∣2

)
𝜎2
𝑠(𝑛,𝑁𝑑 − 1, 𝑡)

]
, (21)

where ℎ̂𝑡[𝑛− 1] is from the previous estimate ĥ𝑛−1, 𝑝𝑛(𝑡, 𝑡)
is the 𝑡𝑡ℎ diagonal element of P𝑛−1, and 𝜎2

𝑠(𝑛, 𝑗, 𝑡) is the
decision error variance of the (𝑗, 𝑡) element of S̃𝑛.

Putting it all together, for the receive antenna 𝑟, the pro-
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posed estimator is summarized as a set of equations :

Q(𝑟)
𝑛 = diag

[
𝑁𝑡∑
𝑡=1

(
𝑝𝑛(𝑡, 𝑡) + ∣ℎ̂(𝑡)𝑛−1∣2

)
𝜎2
𝑠 (𝑛, 0, 𝑡), ⋅ ⋅ ⋅,

𝑁𝑡∑
𝑡=1

(
𝑝𝑛(𝑡, 𝑡) + ∣ℎ̂(𝑡)𝑛−1∣2

)
𝜎2
𝑠 (𝑛,𝑁𝑑 − 1, 𝑡)

]
𝑁𝑑×𝑁𝑑

(22)

A(𝑟)
𝑛 =

(
S̃𝐻𝑛

(
Q(𝑟)
𝑛 +𝒩𝑜I𝑁𝑑

)−1

S̃𝑛+P
(𝑟)−1
𝑛−1

)−1

S̃𝐻𝑛

(
Q(𝑟)
𝑛 +𝒩𝑜I𝑁𝑑

)−1

(23)

P(𝑟)
𝑛 = (I𝑁𝑡 −A(𝑟)

𝑛 S̃𝑛)P
(𝑟)
𝑛−1 (24)

ĥ(𝑟)𝑛 = ĥ𝑛−1 +A𝑛y𝑛, (25)

where ĥ−1 corresponding to the initial time 𝑛 = 0 can
be given by an initial channel estimator based on the
use of known preambles. Also the initial matrix P(𝑟)

−1 can

be derived from the MMSE analysis [30] as P
(𝑟)
−1 =

diag[∣ĥ(r,t)−1 ∣2/(𝛾∣ĥ(r,t)−1 ∣2 + 1)] for 𝑡 = 1, .., 𝑁𝑡 where 𝛾 =
𝐸𝑠/(𝑁𝑡𝒩𝑜). We note that the channel estimation algorithm
summarized in (22)-(25) takes into account the quality of
the soft decisions that are generated at various stages in
the pipeline for a given processing time 𝑛. When 𝑡=1, the
resulting algorithm becomes similar to the one presented in
[22] for the inter-symbol interference channel, as the gist
of the algorithm of [22] is in incorporating the quality of
the soft decisions as part of effective noise in the Kalman
sequential updating process. The difference, however, is that
in our algorithm, we do not assume that the operation of
z𝑛 − S̃𝑛ĥ𝑛−1 makes the observation sequence automatically
white, which, as argued above, would be faulty. Also, in our
algorithm, varying qualities of the decisions generated from
different processing modules at a given time are taken into
account in the update process. More specifically, the effective
noise covariance matrix of (22) is a function not only of 𝑛 but
also of 𝑁𝑑 which itself is a growing function of 𝑛 initially (up
to 2𝑁𝑖𝑡𝑟).

C. Noise Variance Update for the Soft Detectors

A Kalman-based estimation algorithm, as the one proposed
here, has the advantage (compared with, e.g., EM-like algo-
rithms) that the channel estimation error variance is available
for free and it is continually updated as a part of the recursive
process. Realizing that the channel estimation error variance
is a reasonable measure of how accurate the channel estimate
is, this information somehow should play a beneficial role in
the detection (or demapping) process.

As the first step in utilizing the available channel estimation
error variance, the observation equation of (1) is recast with
the channel estimation error shown explicitly:

z(𝑘)𝑛 = Ĥs(𝑘)𝑛 +
(
H− Ĥ𝑛

)
s(𝑘)𝑛︸ ︷︷ ︸

Δ
=a

(𝑘)
𝑛

+n(𝑘)𝑛 , (26)

where superscript 𝑘 points to a specific demapper out of
the 𝑁𝑖𝑡𝑟 demappers operating in the pipeline stages (𝑘 =

1, .., 𝑁𝑖𝑡𝑟). Accordingly, s(𝑘)𝑛 here corresponds to each odd

row of S𝑛 in (2). For the 𝑘𝑡ℎ demapper in the pipeline, the
noise variance is updated to include the channel estimation
error:

N̂(𝑘)
𝑜 [𝑛] = 𝐸

{∥∥∥s(𝑘)𝑛 (H− Ĥ𝑛) + n(𝑘)
∥∥∥2}

= Cov(a(𝑘)𝑛 , a(𝑘)𝑛 ) +𝒩𝑜I𝑁𝑟 , (27)

where ∥ ∥ indicates vector norm operation. The 𝑁𝑟 ×𝑁𝑟
covariance matrix Cov(a(𝑘)𝑛 , a

(𝑘)
𝑛 ) can be obtained (with an

understanding we are focusing on the 𝑘𝑡ℎ demapper in the
pipeline at time 𝑛, drop the indices 𝑘 and 𝑛 to simplify
notation) as

Cov(a, a) = 𝐸
{
(H− Ĥ)𝐻s𝐻s(H− Ĥ)

}
≈ diag

[
𝑁𝑡∑
𝑡=1

𝑝(1)(𝑡, 𝑡)∣𝑠(𝑡)∣2, ..,
𝑁𝑡∑
𝑡=1

𝑝(𝑁𝑟)(𝑡, 𝑡)∣𝑠(𝑡)∣2
]
,

(28)

where the approximation is due to the assumption that channel
estimation errors and transmitted symbols are independent and
that 𝐸[s𝐻𝑛 s𝑛] ≈ 𝐸 [̃s𝐻𝑛 s̃𝑛]. Note that the updated noise variance
is specified in matrix form because different RX antennas are
subject to different channel estimate errors in the Kalman
estimator. This is the same as saying each RX antenna is
subject to a different amount of observation noise. Therefore,
the demapper algorithm must properly be optimized for the
given equivalent noise covariance matrix.

The demappers in the pipeline utilize (26). An 𝑀 -QAM
symbol vector transmitted from 𝑁𝑡-TX streams is demapped
to one binary vector b = [𝑏0, 𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑄𝑁𝑡−1]

𝑇 . Using the
updated noise variance, the likelihood function of the MIMO
demapper is given as

𝑃 (z∣s) =
𝑁𝑟∏
𝑟=1

1√
2𝜋𝒩 (𝑟)

𝑜

exp

(
−∣𝑧(𝑟) − ĥ(𝑟)s∣2

𝒩 (𝑟)
𝑜

)

=
1(√

2𝜋
)𝑁𝑟

𝑁𝑟∏
𝑟=1

𝒩 (𝑟)
𝑜

exp

(
−
𝑁𝑟∑
𝑟=1

∣𝑧(𝑟) − ĥ(𝑟)s∣2
𝒩 (𝑟)
𝑜

)
,

(29)

where 𝒩 (𝑟)
𝑜 is the noise variance corresponding to 𝑧(𝑟), that is,

the (𝑟, 𝑟) diagonal element of matrix N̂𝑜. The 𝑘𝑡ℎ soft MAP
demapper in the pipeline directly gives out the posteriori LLR
output 𝐿𝑃 :

𝐿𝑃 (𝑏𝑖) = ln
𝑃 (𝑏𝑖 = 1∣z)
𝑃 (𝑏𝑖 = 0∣z)

= ln

∑
s∈𝒜𝑁𝑡∣𝑏𝑖=1

𝑃 (z∣s) ∏
𝑗 ∕=𝑖

𝑃 (𝑏𝑗)∑
s∈𝒜𝑁𝑡∣𝑏𝑖=0

𝑃 (z∣s) ∏
𝑗 ∕=𝑖

𝑃 (𝑏𝑗)
+ ln

𝑃 (𝑏𝑖 = 1)

𝑃 (𝑏𝑖 = 0)
,

(30)

where 𝑖 = 0, ..., 𝑄𝑁𝑡 − 1 for the individual bits in the
transmitted symbol vector.

The MMSE demapper solution can also be derived from the
modified observation equation (26). The MMSE demapper can
be shown to yield

ŝ = 𝐸[s] +ΣsĤ
𝐻
(
ĤΣsĤ

𝐻 +Cov(a, a) +𝒩𝑜I
)−1

⋅
(
z− Ĥ𝐸[s]

)
, (31)

where 𝐸[s] is a mean-symbol vector based on the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖
probabilities, and Σs is given as diag[𝜎2

𝑠0 , . . . , 𝜎
2
𝑠𝑁𝑡−1

].



YOON and MOON: SOFT-DECISION-DRIVEN CHANNEL ESTIMATION FOR PIPELINED TURBO RECEIVERS 2147

IV. MEAN SQUARED ERROR (MSE) ANALYSIS

In the MSE analysis, we try to understand 1) the impact
of biased soft decision errors, and 2) when the soft decision
error is unbiased, the performance impact of mismatching the
soft decision error variance in the estimation channel process.
Through the MSE analysis, we also investigate the impacts
of the number and quality of decisions used in the estimation
process.

The soft decisions fed back from the detectors and decoders
are assumed to have potential errors and are written as

𝑠[𝑑, 𝑛] = 𝑠[𝑑, 𝑛] + 𝑒[𝑑, 𝑛], (32)

where 𝑑 = 0, .., 𝑁𝑑−1. As discussed in Section III-B, the fed-
back soft-decisions may contain biased decision errors. So the
decision error 𝑒𝑑 is modeled as

𝑒[𝑑, 𝑛] = 𝑚[𝑛] + 𝑞[𝑑, 𝑛], (33)

where 𝑚 is a non-zero-mean random variable, and 𝑞 is a white
Gaussian noise with zero mean and variance 𝜎2

𝑞 . Also, denote
𝜎2
𝑠 = 𝐸[∣𝑒∣2]. For both biased and unbiased cases, assume that

the total decision error power 𝜎2
𝑠 is identical. Also assume

correlations of the bias mean with the symbol as well as with
the channel are zero (i.e. 𝐸[𝑠𝑚] = 0 and 𝐸[ℎ𝑚] = 0).

The proposed estimator is designed based on the linear
MMSE (LMMSE) criterion. For the MISO communication
channel of (2), the LMMSE estimator is expressed as

ĥ(𝑟)𝑛 = A(𝑟)
𝑛 z

(𝑟)
𝑛 (34)

A(𝑟)
𝑛 = R

(𝑟)
ℎ S̃

𝐻
𝑛

(
S̃𝑛R

(𝑟)
ℎ S̃

𝐻
𝑛 +V(𝑟)

𝑛

)−1

=
(
S̃𝐻𝑛 S̃𝑛 + 𝑣(𝑟)𝑛 R

(𝑟)−1
ℎ

)−1

︸ ︷︷ ︸
Δ
=Ψ−1

S̃𝐻𝑛 , (35)

where V(𝑟)
𝑛 = 𝑣

(𝑟)
𝑛 I𝑁𝑑

with 𝑣
(𝑟)
𝑛 = (𝜎2

𝑠,𝑛

∑𝑁𝑡

𝑡=1 𝜌
(𝑟,𝑡) + 𝒩𝑜),

and R(𝑟)−1
ℎ = 𝐸

{
h(𝑟)h(𝑟)𝐻

}
. Also, denote Ψ

Δ
= S̃𝐻𝑛 S̃𝑛 +

𝑣𝑛R
(𝑟)−1
ℎ . The estimator of (35) is optimum under unbiased

decision errors (𝑚 = 0), and the minimum estimation error
variance of the MIMO LMMSE estimator is obtained as

𝜀2𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑[𝑛] =

𝑁𝑟∑
𝑟=1

𝐸
{
∥h(𝑟) − ĥ(𝑟)𝑛 ∥2

}
(36)

=

𝑁𝑟∑
𝑟=1

tr

{(
S̃𝐻𝑛 V

(𝑟)−1
𝑛 S̃𝑛 +R

(𝑟)−1
ℎ

)−1
}
,

where 𝜀2𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 is the estimation error variance of the opti-
mum MMSE estimator (35). As 𝑁𝑑 increases, it is reasonable
to write S̃𝐻 S̃ = 𝑁𝑑𝐸{S̃𝐻S̃} = 𝑁𝑑(𝐸𝑠 + 𝜎2

𝑠)I𝑁𝑡 . Accord-
ingly, we have

𝜀2𝑜𝑝𝑡 = 𝜀2𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 =

𝑁𝑟∑
𝑟=1

𝑁𝑡∑
𝑡=1

1

𝑁𝑑(𝐸𝑠 + 𝜎2
𝑠)/𝑣(𝑟) + 1/𝜌(𝑟,𝑡)

. (37)

Meanwhile, when 𝑚 ∕= 0 with the same decision error power
𝜎2
𝑠 , the MSE with the biased decision error is calculated as

𝜀2𝑏𝑖𝑎𝑠𝑒𝑑 =

𝑁𝑟∑
𝑟=1

𝐸
{
∣∣h(𝑟) − ĥ(𝑟)𝑏𝑖𝑎𝑠𝑒𝑑∣∣2

}
, (38)
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Fig. 5. Threshold parameter 𝑐 optimization.

where ĥ𝑏𝑖𝑎𝑠𝑒𝑑 = A𝑏𝑖𝑎𝑠𝑒𝑑z and A𝑏𝑖𝑎𝑠𝑒𝑑 =
(S̃𝐻𝑏𝑖𝑎𝑠𝑒𝑑S̃𝑏𝑖𝑎𝑠𝑒𝑑 + 𝑣R−1

ℎ )−1S̃𝐻𝑏𝑖𝑎𝑠𝑒𝑑 that utilizes soft-decisions
with correlated error. Note that the correlation matrix
of decision errors is 𝐸[E𝐻E] = 𝑁𝑑𝜎

2
𝑠 I𝑁𝑡 + 𝑁𝑑Φ𝑁𝑡 ,

where Φ𝑁𝑡 is a matrix with all diagonal elements set to
zeros and all non-diagonal elements to ∣𝑚∣2. Assuming
a very large 𝑁𝑑 and applying a matrix inversion lemma
(X+Y)−1 = X−1 −X−1(X−1 +Y−1)X−1, we can write(

S̃𝐻𝑏𝑖𝑎𝑠𝑒𝑑S̃𝑏𝑖𝑎𝑠𝑒𝑑 + 𝑣𝑛R
−1
ℎ

)−1

= (𝑁𝑑
(
𝐸𝑠 + 𝜎2

𝑠

)
I𝑁𝑡 + 𝑣𝑛R

−1
ℎ︸ ︷︷ ︸

=Ψ

+𝑁𝑑Φ𝑁𝑡)
−1

= Ψ−1 −Ψ−1
(

1
𝑁𝑑
Φ−1
𝑁𝑡

+Ψ−1
)−1

Ψ−1︸ ︷︷ ︸
=Λ

.

(39)

Using (39) and the facts tr
(
Ψ−1Φ𝑁𝑡Rℎ

)
= 0 and

tr (Φ𝑁𝑡Rℎ) = 0, the MSE of the LMMSE estimator suffering
from correlated decision errors is finally expressed as

𝜀2𝑏𝑖𝑎𝑠𝑒𝑑 =

𝑁𝑟∑
𝑟=1

tr
{
R

(𝑟)
ℎ − ĥ

(𝑟)
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑h

(𝑟)𝐻
}

+tr
{(

𝑁𝑑

(
𝐸𝑠 + 𝜎2

𝑠

)
Λ(𝑟)R

(𝑟)
ℎ

)}
(40)

= 𝜀2𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 +

𝑁𝑟∑
𝑟=1

tr
{(

𝑁𝑑

(
𝐸𝑠 + 𝜎2

𝑠

)
Λ(𝑟)R

(𝑟)
ℎ

)}
.

Note thatΛRℎ is a semi-positive definite matrix, and therefore
𝜀2𝑏𝑖𝑎𝑠𝑒𝑑 > 𝜀2𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 when ∣𝑚∣ ∕= 0. This confirms the loss due
to correlated decision errors, even if the error power is the
same. In effectively whitening the correlated decision error, the
constant 𝑐 is a crucial parameter that determines the number of
selected symbols 𝑁𝑑 and thus controls the trade-off between
the observation sample size and the amount of error correlation
in the channel estimator. The existence of an optimum value
for 𝑐 is also shown through the MSE simulation results of
Fig. 5. Based on Fig. 5, we set 𝑐 = 2 for the 3 × 3 and
4 × 4 SM-MIMO-OFDM systems, and 𝑐 = 2.5 for the 2 × 2
SM-MIMO-OFDM system.
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Fig. 6. Open-loop channel estimation MSE for different values of 𝜎2
𝑠 (𝑁𝑑 =

12).

Even with unbiased decision errors, the LMMSE estimator
suffers performance degradation when the noise variance is
mismatched. Let us quantify the MSE penalty associated with
not accounting for the uncertainty inherent in the soft deci-
sions in the form of increased noise variance. The LMMSE
estimator failing to consider the soft decision error can be
described as

ŵ(𝑟)
𝑛 = W(𝑟)

𝑛 z
(𝑟)
𝑛 (41)

W(𝑟)
𝑛 = R

(𝑟)
ℎ S̃

𝐻
𝑛

(
S̃𝑛R

(𝑟)
ℎ S̃

𝐻
𝑛 +𝒩𝑜I𝑁𝑑

)−1

=
(
S̃𝐻𝑛 S̃𝑛 +𝒩𝑜R(𝑟)−1

ℎ

)−1

S̃𝐻𝑛 . (42)

Utilizing (37) and denoting Δ
(𝑟)
𝑛

Δ
= ĥ

(𝑟)
𝑛 − ŵ

(𝑟)
𝑛 , the

estimation error variance 𝜀2𝑤 of the estimator (42) can be
shown to be

𝜀2𝑤[𝑛] =

𝑁𝑟∑
𝑟=1

𝐸
{
∥h(𝑟)𝑛 − ŵ(𝑟)

𝑛 ∥2
}

=

𝑁𝑟∑
𝑟=1

tr𝐸
{
∥h(𝑟)𝑛 −

(
ĥ(𝑟)𝑛 −Δ(𝑟)

𝑛

)
∥2
}

= 𝜀2𝑜𝑝𝑡[𝑛] +

𝑁𝑟∑
𝑟=1

tr
{
𝐸
{
h(𝑟)𝑛 ĥ

(𝑟)𝐻
𝑛 − ŵ(𝑟)

𝑛 ŵ
(𝑟)𝐻
𝑛

+ŵ(𝑟)
𝑛 h

(𝑟)𝐻
𝑛 − h(𝑟)𝑛 ŵ(𝑟)𝐻

𝑛

}}
. (43)

To simplify notation, the indices 𝑟 and 𝑛 are tempo-
rally dropped. As the number of iteration increases, the
matrix inversions in (35) and (42) can be simplified as(
S̃𝐻 S̃+ 𝑣R−1

ℎ

)−1

= diag[ 𝜌1/
(
𝜌1𝑁𝑑(𝐸𝑠 + 𝜎2

𝑠 ) + 𝑣
)
,...,

𝜌𝑁𝑡/
(
𝜌𝑁𝑡𝑁𝑑(𝐸𝑠 + 𝜎2

𝑠 ) + 𝑣
)
] and

(
S̃𝐻 S̃+𝒩𝑜R−1

ℎ

)−1

=

diag[𝜌1/
(
𝜌1𝑁𝑑(𝐸𝑠 + 𝜎2

𝑠 ) +𝒩𝑜
)
,...,𝜌𝑁𝑡/

(
𝜌𝑁𝑡𝑁𝑑(𝐸𝑠 + 𝜎2

𝑠

)
+𝒩𝑜)], where the subscript for 𝜌 for the time being indicates
the TX antenna. Also, noting 𝐸{ĥ(h− ĥ)𝐻} = 0 by the
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Fig. 7. Open-loop channel estimation MSE depending on different values
of 𝑁𝑑 (𝜎2

𝑠 = 0.1).

orthogonality principle, it can be shown that

𝐸{hĥ𝐻} = RℎS
𝐻 S̃

(
S̃𝐻 S̃+ 𝑣R−1

ℎ

)−𝐻

= diag

[
𝜌21𝑁𝑑𝐸𝑠

𝜌1𝑁𝑑(𝐸𝑠+𝜎2
𝑠)+𝑣

, ...,
𝜌2𝑁𝑡

𝑁𝑑𝐸𝑠

𝜌𝑁𝑡𝑁𝑑(𝐸𝑠+𝜎2
𝑠)+𝑣

]
𝑁𝑡×𝑁𝑡

.
(44)

We also write

𝐸{ŵŵ𝐻}
=
(
S̃𝐻 S̃+𝒩𝑜R−1

ℎ

)−1

S̃𝐻
(
SRℎS

𝐻 +𝒩𝑜I𝑁𝑑

)
⋅ S̃

(
S̃𝐻 S̃+𝒩𝑜R−1

ℎ

)−𝐻

= diag

[
𝜌21𝑁𝑑(𝜌1𝑁𝑑𝐸

2
𝑠+𝜌Σ𝜎

2
𝑠𝐸𝑠+𝒩𝑜(𝐸𝑠+𝜎

2
𝑠))

(𝜌1𝑁𝑑(𝐸𝑠+𝜎2
𝑠)+𝒩𝑜)

2 , ...,

𝜌2𝑁𝑡
𝑁𝑑(𝜌𝑁𝑡𝑁𝑑𝐸

2
𝑠+𝜌Σ𝜎

2
𝑠𝐸𝑠+𝒩𝑜(𝐸𝑠+𝜎

2
𝑠))

(𝜌𝑁𝑡𝑁𝑑(𝐸𝑠+𝜎2
𝑠)+𝒩𝑜)

2

]
𝑁𝑡×𝑁𝑡

,

(45)

where 𝜌
Σ

=
∑𝑁𝑡

𝑡=1 𝜌𝑡. Finally, substituting (44) and (45)
in (43) and also noting 𝐸{ŵh𝐻} = 𝐸{hŵ𝐻}, the MSE
convergence behavior of the estimator (43) can be shown to
be

lim
𝑁𝑑→∞

𝜀2𝑤[𝑛]

= 𝜀2𝑜𝑝𝑡[𝑛] +

𝑁𝑟∑
𝑟=1

𝜌
(𝑟)
Σ 𝐸𝑠

𝐸𝑠 + 𝜎2
𝑠 [𝑛]

(
1− 𝐸𝑠

𝐸𝑠 + 𝜎2
𝑠 [𝑛]

)
,

(46)

from which it is easy to see that the mismatched MSE is an
increasing function of the soft decision error variance 𝜎2

𝑠 .
To develop insights into the performance sensitivity off the

sequentially updated channel estimator against the variations
of the parameters 𝜎2

𝑠 and 𝑁𝑑, we resort to an open-loop
investigation. For this, the decision-feedback channel estimator
is modified in such a way that unbiased soft decisions with
various 𝜎2

𝑠 and 𝑁𝑑 combinations are artificially generated
for the channel estimator. A 7-iteration IDD receiver for the
2 × 2 16-QAM MIMO-OFDM system is used for this test,
but instead of using actual feedback from the demappers and
decoders, artificially generated soft-decisions are provided to
the channel estimator of (22)-(25).
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Fig. 8. EXIT charts for the 2 × 2 SM-MIMO-OFDM turbo receiver at
SNR=14 dB.

Fig. 6 and Fig. 7 show the MSE performance depending on
the decision quality 𝜎2

𝑠 and the number of feedback decisions
𝑁𝑑 with an assumption of uncorrelated feedback decisions.
The signal power is fixed at 𝐸𝑠 = 1 and the channel SNR
at 14 dB. With 𝑁𝑑 = 12, the packet error rate (PER) due to
imperfect CSI became negligible when 𝜎2

𝑠 ≈ 0.1. In Fig. 7, it
is seen that reducing the number of feedback decisions, 𝑁𝑑,
while fixing the decision quality causes the MSE to increase.

V. PERFORMANCE EVALUATION

The proposed algorithm is investigated through an extrinsic
information transfer (EXIT) chart analysis and packet error
rate (PER) simulation. Performances are evaluated for 2 × 2,
3 × 3 and 4 × 4 16-QAM SM-MIMO-OFDM systems. The
transmitter sends a packet with 1000 bytes of information.
The SISO MAP-demapper is used for the 2 × 2 SM-MIMO-
OFDM system, whereas the SISO MMSE-demapper is used
for the 3 × 3 and 4 × 4 SM-MIMO-OFDM system [6] due
to complexity. A rate-1/2 convolutional code is used with
generator polynomials 𝑔𝑜 = 1338 and 𝑔1 = 1718, complying
with the IEEE 802.11n specifications [26]. The SOVA is used
for decoding. The MIMO multi-path channel is modeled with
an exponentially-decaying power profile with 𝑇𝑟𝑚𝑠 = 50𝑛𝑠
uncorrelated across the TX-RX links established.

A. EXIT and PER Performance Comparisons

The EXIT chart is a well-established tool that allows the
understanding of the average convergence behavior of the
mutual information (MI) in iterative soft-information process-
ing systems [28]. Fig. 8 shows the results of an EXIT chart
analysis on various competing schemes. A 2× 2 SM-MIMO-
OFDM system is used for this, and an SNR of 14 dB is chosen.
𝐼𝐴1 and 𝐼𝐸1 measure the MI at the input and output of the
demapper, respectively, whereas 𝐼𝐴2 and 𝐼𝐸2 are the respective
MI at the input and output of the decoder. At the next iteration
stage, 𝐼𝐸1 becomes 𝐼𝐴2 and 𝐼𝐸2 turns to 𝐼𝐴1 .

In the figure, the top-most curve indicates the average trans-
fer function of MI through the demapper and the bottom-most
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curve is the same function for the decoder. Both the demapper
and decoder EXIT chart curves correspond to Gaussian-
distributed input LLRs, and the demapper EXIT curve is also
based on the assumption of perfect channel estimation. The
stair-case MI plots represent actual MI measured during IDD
simulation runs and shows how the MI improves through
the iterative process for three different channel estimation
schemes. The gap between each stair-case MI trajectory and
the demapper EXIT curve represents the performance loss
due to imperfect-CSI. The solid stair-case line represents
the proposed channel estimation algorithm. The dashed-line
(labeled “Song") corresponds to the Kalman channel estimator
of [23] applied to the conventional-IDD setting (non-pipelined
IDD with a demapper utilizing the noise-variance update of
(27) with channel estimation using only the decoder output
decision). The dotted line is for the demapper utilizing only the
preamble-based initial channel estimation (following the IEEE
802.11n format, where a fixed number of initial preamble sym-
bols in the high-throughput long training field is utilized). For
the proposed scheme, the MI trajectory measurement is taken
from the last demapper in the pipeline, as the last demapper
block best reflects the quality of the final decisions. It is clear
that the proposed punctured-feedback Kalman estimation with
pipelined-IDD shows superior MI convergence characteristics.
The scheme of [23] fails to improve MI beyond nine iterations.
With the demapper utilizing only initial channel estimation,
the trajectory fails to advance earlier in the iteration.

Fig. 9 shows PER performances of the receivers with
different channel estimators in the 2 × 2 SM-MIMO-OFDM
system. Seven iterations are applied beyond which the iteration
gain is plateaued. The performance gap between perfect CSI
and preamble-based initial CE only is nearly 3 dB at low
PERs. It can be seen that at low PER the proposed esti-
mator almost compensates for the loss due to imperfect-CSI
when the threshold parameter is set at 𝑐 = 2.5. Although
the performance with small 𝑐 has inferior performance at
low SNRs, the proposed Kalman CE curve with 𝑐 = 2.5
crosses the 𝑐 = 4 curve as SNR gets higher. The large 𝑐 is
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Fig. 10. PERs with different channel estimators: 3x3 SM-MIMO-OFDM (7
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effective in averaging noise in low SNR, but allows relatively
large correlated errors. As expected from the EXIT chart
analysis results, the Kalman estimator of [23] that utilizes
only the decoder output in a non-pipelined setting does not
perform as well. As one of the algorithms considered for
comparison, the decision-directed EM estimator (referred to
as EM-DD here) introduced as a variant of the EM esti-

mator in [19] is applied with ĥ(𝑟)𝑜,𝑛 =
(
S̃𝐻𝑛 S̃𝑛

)−1

S̃𝐻𝑛 z
(𝑟)
𝑛 .

In addition, the EM estimate is blended with the preamble-
based channel estimate by a combining method (i.e., ℎ̂(𝑡,𝑟)𝑛 =

𝑎𝑛ℎ̂
(𝑡,𝑟)
𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 𝑏𝑛ℎ̂

(𝑡,𝑟)
𝑜 [𝑛]) [20]. A method to find the com-

bining coefficients 𝑎𝑛 and 𝑏𝑛 is discussed in [20]. The EM
noise variance update method is presented in [19] as 𝒩𝑜[𝑛] =
1/𝑁𝑟𝑁𝑑

𝑁𝑟∑
𝑟=1

𝑁𝑑−1∑
𝑑=0

(
𝑧
(𝑟)
𝑛 − S̃𝑛ĥ(𝑟)𝑛

)∗ (
𝑧
(𝑟)
𝑛 − S̃𝑛ĥ(𝑟)𝑛

)
. As can

be seen, this scheme also does not perform as well as the
proposed algorithm.

Fig. 10 and Fig. 11 show PER curves for 3×3 SM-OFDM-
OFDM and 4 × 4 SM-OFDM-OFDM systems, respectively.
These figures tell a consistent story. Namely, the initial-
CE-only scheme suffers about a 3dB SNR loss relative to
the perfect CSI case. The proposed schemes close this gap
significantly, outperforming both the Kalman-based algorithm
of [23] and the EM-based algorithm of [19]. As for the
proposed channel estimation scheme, a more aggressive punc-
turing (corresponding to a lower 𝑐 value) tends to give a
lower PER as SNR increases. Before finishing this section,
we briefly mention complexity. For all considered channel
estimation schemes - the proposed, the Song method and the
EM-DD scheme - implementation complexity largely arises
from the matrix inversion operation. All schemes require
matrix inversions of the same dimension. Consequently, the
proposed method and the Song method require complexity
that roughly grows as 2𝑁𝑟 × 𝑂(𝑁3

𝑡 ) whereas the EM-DD
requires complexity proportional to just 𝑂(𝑁3

𝑡 ). This is due
to the consequence that both our method and the Song method
require matrix inversion for each receive antenna, whereas the
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EM-DD method needs matrix inversion just once and can be
used for all receive antennas. The factor 2 accounts for the
fact that two matrix inversions are required for each update of
the Kalman gain in the proposed and Song methods.

VI. CONCLUSIONS

A sequential soft-decision-directed channel estimation algo-
rithm for MIMO-OFDM systems has been proposed for the
specific pipelined turbo-receiver architecture. The algorithm
deals with observation sample sets with varying levels of
reliability. In coping with decision errors that propagate in the
pipeline, we have introduced a novel method of innovating
a correlated observation sequence via puncturing. Based on
the refined innovation sequence, a Kalman-based estimator
has been constructed. The proposed algorithm establishes im-
proved Kalman-based channel estimation where the traditional
innovations approach cannot create a true innovation sequence
due to soft-decision error propagation. The EXIT chart, MSE
analysis and PER simulation results have been used to validate
the performance advantage of the proposed channel estimator.
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